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Critical dynamics of the d = 1 kinetic Ising model 
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and 
Winnipeg Institute for Theoretical Physics Winnipeg. Manitoba, Canada R3T 2N2 

Received 5 January 1993 

Abstract The critical dynamics of the d = I altemating bond Glauber-king model and related 
models is studied.. There are two contributions to the critical slowing down. One is due to 
the long-mge fluctuations near the critical point It is characterized by the dynamic exponent 
L = 2.. The other contribution is a temperahlre dependence of the bare time scale, which is 
a result of shomange phenomena In contrast to previous smdies. it is shown that all these 
models belong to one universality class. 

1. Introduction 

The theory of dynamic scaling [1,2] relates the critical slowing down near the critical 
temperature T, to the long-range fluctuations of the order parameter. The generalization 
of the static scaling hypothesis to time-dependent phenomena was suggested before the 
development of the renormalization group (Re) technique [3]. ' This generalization is 
straightforward near T, there is one relevant time scale, r,. This time scale depends 
on T - T, only through its dependence on the relevant length scale of the system, the 
correlation length [(T - Tc), and thus may diverge at T, with a characteristic exponent z .  

The static scaling hypothesis leads to the classification of the critical exponents in terms 
of universality classes and it shows that only a few parameters of a system are important 
for the nature of the fixed points of the RG transformation. These parameters include the 
symmetry of the Hamiltonian and the dimensionality of the system. Since these parameters 
are common to a variety of systems, it is possible to classify the behaviour of systems near 
Tc into a few universality classes. 

The main theoretical support for the dynamic scaling hypothesis came, as in the statics; 
from the RG study of dynamic phenomena. Halperin et a[ [2] showed that the dynamic 
exponent z .  r, - f 2 ,  of different systems can also be classified according to universality 
classes. These classes are the subdivision of the static universality classes according to the 
conservation laws that the systems obey. The behaviour of a system at different wavevectors 
k near the critical temperature is characterized according to three regions 

region I : k< << 1 ~ T - T, < 0 

region I1 : k[ >> 1 T % T,. (1) 
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The dynamic scaling hypothesis predicts the following asymptotic behaviour for the 
characteristic time scale, U&) t;' = k L Q ( k t ) ,  in the different regions: 

kt + cu(region IQ:&(&) = kLQ(k t )  Q ( k t )  + constant 

kt + O(region m): w,(k) = t - L f ( k f )  f ( k t )  + constant. (2) 

Note that region I is inaccessible if T, = 0. 
Following the study [2] of the critical dynamics of systems having dimension d = 4-c, 

real-space RG studies of system" having lower dimension were reported [4,5]. Neither 
techniques displayed any violations of the dynamic scaling hypothesis. However, in the last 
half decade, several authors have predicted that dynamic scaling can be violated in systems 
having a zero-temperature critical point. Studies of quasi-one-dimensional systems with 
an underlying fractal or hierarchical structure suggested a temperaturedependent dynamic 
exponent [6,7]. Haake and Tho1 [SI showed that z of the d = 1 Ising model may depend 
on the details of the kinetic equation. 'On the other hand, exact RG calculations (in the linear 
response regime) are consistent with the 'conventional' dynamic scaling hypothesis [9, lo]. 
Kutasov et a1 [7] attempted to explain this controversy using a model with hierarchical 
couplings. They used RG methods and a matching procedure [l l ,  121, and obtained a result 
similar to that of Henley [6]. Droz et al 1131 pointed out that if the d = 1 Ising system 
has a alternating-bond structure, z depends on the ratio of the bond strengths. Therefore, 
any value of z > 2 can be found. AshrafF and Stinchcombe [14] performed exact RG 
calculations for the alternating-bond Ising chain and obtained a non-universal value of z 
in agreement with Droz et a1 [13]. Lage [I51 has studied a model with a larger unit cell 
and also obtained a non-universal value for z using RG methods. However, we have re- 
examined these calculations and have shown that, by carefully separating the critical effects 
govemed by the fixed point of the RG transformation from the non-critical effects due to 
short-range details which determine the amplitudes, a universal value of z is 0btained.A 
similar controversy for the alternating-bond Ising chain also appears in the problem of 
spinodal decomposition [16,17]. In a recent letter [18] we have shown that for a chain 
with alternating-bond strengths there exists a fundamental difference between the single- 
and multi-spin flip dynamics. The reason for the apparent violation of standard scaling is 
that the critical point of the system is at zero temperature. Any inhomogeneous Ising chain 
has a large number of states at zero temperature which are metastable 1191 against single-spin 
flips. Spins that are coupled by strong bonds form blocks which have their spins aligned. At 
low T, the lowest energy excitations correspond to these blocks flipping as a unit because 
in this case only the weak bonds connecting the blocks are broken. Hence the important 
excitations in the model do not correspond to single-spin flips. Therefore, if only single- 
spin flip dynamics is allowed, there are an infinite number of divergent relaxation times 
with each one corresponding to a metastable state. By allowing two-spin flip dynamics, we 
demonstrated that the standard dynamics is recovered and that the alternating-bond chain 
belongs to the same dynamic universality class as the homogenous Glauber Ising chain. It 
is straightforward to generalize this treatment to more complicated strnctures with a larger 
unit cell. 

In the present work we study the discrepancy between the results obtained by RG and 
by other methods in one-dimensional systems. We address the~question of the validity of 
conventional dynamic scaling in these systems when the system is restricted to singlespin 
flips. A common feature of these systems is that at the critical point they are also in the 
ground state. Therefore, near the zero-temperature point, the variation in the bond strengths 
can give rise to metastable states consisting of finite blocks that have a diverging bare time 



Critical dynamics of the d = I kinetic Ising model 2507 

scale. By 'bare time scale' we mean that its origin is due to short-range effects. The bare 
time scale has nothing to do with the long-range fluctuations that characterize the critical 
point. These metastable states do not affect the static critical exponents but they are directly 
responsible for the presence of non-universal temperature-dependent terms in the dynamics. 
The reported violations of the dynamic scaling hypothesis are in region ID where k + 0 and 
it is difficult to separite the 'bare time scale' from the critical contribution. The inability 
to distinguish in region III between the two kinds of contributions caused some authors 
[S, 13,17,20] to interpret the results of their study as a violation of dynamic scaling; 

The outline of the present paper is as follows. A system with alternating-bond strengths 
is described in section 2 and it is shown that the conventional dynamic scaling result of 
z = 2 is correct and that the apparent violations are due to a temperature dependence of 
the bare time scale. In section 3, it is shown that the above result is a common feature to 
all d = 1 kinetic king models that are translationally invariant. All of these systems do 
belong to one universality class with the dynamic critical exponent z = 2. The application 
of the standard RG techniques to these systems is reviewed in section 4. It is shown that, 
although the fixed points of these methods are not sensitive to the short-range details, a 
careful analysis of the approach to the unstable fixed points must be carried out in order to 
calculate the effects on the bare time scale. Our results are summarized in section 5. 

2. The kinetic king  model with alternating-bond strengths 

The kinetic king model on the linear chain with alternating bonds is the simplest non-trivial 
model that presents the controversial phenomena discussed in the previous section. It has 
the advantage that it can be solved exactly by a variety of methods. The Hamiltonian (in 
units of . - l / k ~ T )  of the king chain with altemating bonds has the form 

(3) 

where 52 > J1 > 0. The equilibrium properties of the partition function, P, = eH, were 
studied using RG methods by Nelson and Fisher [12]. These properties can also be evaluated 
directly using transfer matrix methods. 

The master equation of the Glauber [21] kinetic Ising model is 

where P ( [ S ] ,  t) is the time-dependent spin probability distribution, r-' is a bare time scale 
for single-spin flips, pi is the spin flip operator, p i f ( S i )  = f ( -Si) ,  and Wi(Si) is the 
probability transition rate of the ith spin from a state Si to a state -Sf. 

The transition probability rate satisfies detailed balance, 

(1 -Pi )Wi(S)f 'e ( (S l )  = O  (5) 

and thus ensures the ergodicity of the system [21]. However, this equation does not define 
a unique Wi. The straightforward generalization of the choice made by Glauber to the 
alternating bond chain [I31 is 

wi - - 2( 1 -a+Si-IS, -a;Sjsi+l) (6) 
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where 

(7) + -  1 .ai = #anh(Ji + Ji+d =ttanh(Ji - Ji+l )J .  

The average spin value is the solution of 

where the average ( )  is taken with respect to P ( [ S ) ,  t). Using (7), the set of equations (8) 
is reduced in the ith unit cell to the foIlowing equations 

+ d 
~ q z i  = -rhi -a l  q2i-1 - a;qzi+l) 

dt (9) + d 
-4Zi+l = - a~ qz - a;qz+zz) 

where 

8 =a: s $(tanh(Jz+ 51) * tanh(J2 - 51)). (10) 

A summation with respect to i of the set of equations (9) leads to a simple solution for 
the magnetization M ( t )  = Ciqi. Droz et al [13] found that the leading term in the 
magnetization at low T is 

M ( t )  = M ( 0 )  exp(-r[l - tanh(Jz + Jl)]t}. (11) 

Thus it appears that the magnetization relaxes near the critical point Tc = 0 with a time scale 
7 - (2i?)-1e2(h+’l). The correlation length, f, is controlled by the weakest bond [12] and 
diverges as c - e’’:. By expressing 7 in terms of E, Droz eta1 concluded that T - fi+’z/’l 

and hence that the system has a non-universal dynamic exponent z = 1 + J z / J I .  
The equations in (9) can be solved for any Fourier component of M(t ) .  This process 

reveals that, while the first part of their conclusion is formally correct, the second part can 
be re-interpreted. The dependence of the time scale on the wavevector can be calculated 
by substituting qzi+1 = QI exp(i[(Zl+ 1)k - w t ] )  and qu = Qzexp(i[2lk -ut]] into (9). 
The secular equation leads to the following dispersion relation 

o/ r = 1 f [tanh2(Jz + 51) + (tanh’(J2 - 51) - tanh’(J2 + 51)) sin2k1’/2. (12) 

Luscombe [ZO] also obtained this result but did not identify the value of z correctly. In the 
limit of small k, the slow mode behaves as w, - re-z(J1-.r~)(f-z+kz). This can be written 
as . .  

- re-2(J2-3W(1 + (kc)-2) 

in region II and as 

qrr - re-2(’z-’I)c-2(1 + (!&) 
in region JlI. Comparison with (2) identifies the universal value z = 2 of the standard kinetic 
Ising model [21,91 but with a temperature-dependent bare time scale r-I(T).  
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Thus the model has two time scales. The first one is the bare time scale 
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which is'due to short-range effects and characterizes the width of the spectrum. The 
dispersion relation (12) describes two bands of characteristic frequencies and is shown 
in figure 1. In the limit of low T the width of both bands is proportional to e-z(fz-fl). Each 
mode in the lower band corresponds to a single-spin-flip metastable state with a relaxation 
time that diverges at T = 0. However, this divergence has nothing to do with critical 
phenomena and is present in any chain with inhomogeneous couplings. When all the bonds 
have the same strength, the two bands merge into each other and the width remains finite 
at T = 0. If the characteristic frequencies are measured in units of the band width, then the 
internal structure of the dispersion relation is the same as in the homogeneous chain. The 
second time scale (in units of the first), - 5' is due to the long-range fluctuations. This time 
scale is responsible for the detailed structure of the dispersion relation. Therefore, when the 
bare time scale due to short-range effects is separated from the time scale due to long-range 
fluctuations, the dynamic exponent z is clearly identified and has the same value as in the 
homogeneous chain. 

~ ~. . . .  

Figure 1. The characteristic frequencies o/r as a 
function of k (in units of r / Z )  for,the altemhg-bond 

n 7 chain with h = 1.5. Jt = 1.0 form two bands as 
0 

k indicated by t i e  shaded kas. 

3. Critical dynamics of Ising chains with large unit cells 

The dynamics of the alternating-bond Glauber-king chain is the conventional Glauber 
dynamics [21] combined with a diverging bare time scale associated with short-range single- 
spin-slip metastable states separated by weak bonds. The same dynamics is expected even 
when the bond structure is more complicated provided it is translationally invariant. 

The critical dynamics, as well as the statics are controlled by the weakest bonds, J,,.in, 
and this ensures the Glauber dynamics with z = 2..The metastable states that have diverging 
bare time scales are configurations in which the spins in the cells between the J,,.in are aligned 
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in the same direction. The bare time scale is associated with the maximum energy barrier 
of the metastable state, 70 - e2(’--’m:*), where J,, is the maximum bond strength. 

To prove this result one has to find the asymptotic form of the acoustic branch of the 
secular equation given by the determinant of an n x n matrix, where n > 2 is the number 
of spins in the unit cell of the king chain. The main steps in the long, but saaightforward, 
algebra are reported in the appendix. The interactions in the unit cell can vary without any 
general pattern. In the following we present only the model and the results. 

The Hamiltonian (in units of -I/kBT) of the general king chain is 

B W Southem and Y Achiam 

H = JiSi-lSi Ji = Ji+n (14) 

and all .I; are positive. The probability transition rate (6) is also applied to the general case. 
The set of equations (8) is reduced to n equations in the unit cell 

d 
dt I -  -q .  - -r(qj - a+q.-l 1 1  - a,:qj+l) j = 1, n (15) 

where a;, a; are given by (7). If we assume a solution of the form, qj = Qje’[jk-mr], we 
obtain the secular equation, ID1 = 0 where D has the form, 

D=[ 0 -a:e-ik (1 - w/r) - q d k  ... 1. (16) 

This matrix is an almost tridiagonal matrix (the ‘almost’ is due to the elements in the 
upper right and lower left comers). The form of the determinant is typical of tight binding 
problems and the rules for its expansion are described in the appendix. At low T the 
asymptotic form of the elements in D is 
a; N 1 - e-2A, if J1+1 - 4 < 0 (decreasing bonds) 

(I  -a;eik 0 0 ... -4:e-ik 

-a;e-ik (1 - o/ r) -a;gk 0 ... 

-a,eik 0 ... 0 -a;e-ik (1 - m m  

a; - 
a; N e-2“ a; - 1 -e-’”‘ if J I + ~  - JI z 0 (increasing bonds) (17) 
where AI = I JI+1- JI I. Using these low-temperature forms we find the following dispersion 
relation for the slowest mode (see the appendix) 

o/ r - e-z(’--JMn)[l - cos(nk) + e4’“”]. (18) 
Again we have two different time scales. The factor 70 - r-Le2c’m--’mm) is the local unit 
cell time scale and is not related to the critical fluctuations. The critical dynamics is similar 
to that of the alternating-bond model and can be written in regions II and Ill respectively 
as 

The correlation length, $ - e”“”, i s ~ a  function of the weakest bond in the unit cell [12]. 
Comparison of (19) with (2) identifies the universal value z = 2 of the standard kinetic 
king model. 

RG studies [14,15] of the models in this and the previous section have found non- 
universal values for z which depend upon the magnitides of the bonds. However, in the 
following sections we show that a careful analysis of these RG methods does yield a universal 
value for z for all of these models. 
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4. RG study of the kinetic Jsing model 

4.1. Decimation with scaling factor b = 2 

The study of the alternating-bond king chain clearly shows that there can be different 
contributions to the time scale of the system which are difficult to separate in region III. 
Since most of the RG calculations are performed in this region, it is of interest to study the 
alternating-bond model in the RG context. There are many schemes of RG transformations 
that can be used to study the master equation (4). The simplest approach is the decimation 
of the master equation (8) for the average spin value [22].  

In the set of equations (9) that describes the kinetics of the alternating-bond chain, we 
can substitute qj-1 and qi+1 into the equation for qi. This eliminates half of the degrees of 
freedom, and creates an effective spin system on a lattice with double the lattice spacing (an 
RG transformation with scaling factor b = 2). The Laplace transform of the spin average 
Qzi ,  satisfies in the limit w + 0 the following equation 

Using the definitions (10) for ai it is easy to see that (20) is equivalent to the master 
equation of the uniform chain with an effective interaction J given by 

(21) tanh j = (tanh 51)(tanh 52) 

and an effective bare'inverse time scale 
= re-Z(Jz-Ji), 

In terms of the renormalized quantities after the first step, equation (20) has the form 

The effective uniform chain can now be renormalized again but the effective bare 
time scale remains unchanged since the bonds are now homogeneous on this length scale. 
The static RG transformation is tanh 3 = tanha .f and the critical fixed point of the RG 
transformation is tanh j' = 1 which yields 

tanh J; = tanh 5; = 1. 

r' =, i ( l  - tanhZ?)r. (25) 

(24) 
The RG transformation of the time scale of the uniform king chain can be obtained as 

the limit 51 = 52 of the factor 2/(1 - a:a;'- aza;) in (20) and is given by 

The rescaling of the time (25) at the fixed point (24) leads to the dynamic exponent 

5' =b-Lr bL = 4  z = 2 .  (26) 
The above RG scheme gives the correct z that characterizes the slowing down due to 

the long-range fluctuations near T,. The characteristic time scale is, however, measured in 
units of the diverging bare time scale f-'. After a Fourier transform of (23) in k space, 
the dispersion relation in region III becomes 

- ~ 1 ? ~ - 4 f [ i  + $21 
2re-2(J2-fde-4J1 [I  + e4'1k21. 

The two contributions to the critical slowing down are clearly separated. 
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4.2. Decimation with scaling factor b = 3 

B W Southern and Y Achiam 

The decimation by a scaling factor b = 2 does not preserve the alternating-bond nature of 
the original problem. When the decimation is performed with an odd scale factor, the bond 
structure is preserved [12]. The set of equations (9) can be written using reduced variables 

as 

(29) 

The Qli+, with j = (f2, f l }  are eliminated from this set of equations. The remaining 
Q s  satisfy equations of the same form with renormalized coefficients corresponding to the 
scaling factor b = 3 

+ 
Q2i = x: Q 2 i - I  + x; Qz+l Qzi+t = xz Q Z I  + x; QZi+z. 

(30) +‘ Qzi = X I  Qzi-3 + ~ ; ‘ Q * i + 3 .  

where 

(31) 

and x;‘ is obtained by interchanging the plus and the minus signs. The relationships 
between the parameters x y  = x:’ are preserved. The above transformation is the same as 
that obtained by Ashraff and Stinchcombe 1141. 

x+‘ - +.;(I -x:*) 
I -  (1-x~2+x:x;-x;2)(1-x:z-.~x;-.;z) 

The non-trivial fixed point of (31) is 

.+* = x;* = .! 2‘ (32) 

This implies that w* = 0 and Tc = 0. At o = 0, the recursion relations are equivalent to 
the known static recursion relations [12] 

tanh J{ = (tanh’ Jl)(tanh Jz)  tanh Ji = (tanh Jl)(tanh* Jz) (33) 

which have the fixed point 

tanh J;  = tanhJ; = 1. (34) 

The aajectory flow of the RG transformation (31) is shown in figure 2. There are two 
fixed points: the high-temperature fixed point 0 which is attractive and the homogeneous 
chain critical point A (32) which has one repulsive and one attractive eigenvalue. The 
eigenvalues of the linearized recursion relations at A are 9 and f and the corresponding 
eigenvectors are in the direction of the two invariant lines x: = x; and x: + x; = 1 
respectively. At low T, the initial state of the alternating-bond Hamiltonian is located in 
the vicinity of point B. The flow from the initial state to the region near A cannot be 
described by an RG transformation linearized about the point A. To describe the flow along 
the line BA it is suffucient to keep only terms up to order E = ec2(’2-’1) and we have 



Critical dynamics of the d = 1 kinetic Ising model 7313 

x: = 1 - E ,  x; = E .  In the low-frequency and small k limit, the dispersion relation (12) 
can be written in terms of the reduced variables as 

Near E ,  we have x: + x; - 1 and x: - x; - 1 - 26 and this gives 

w/  r - 2ek2. (36) 

However, the first iteration of the transformation moves the initial point B very close to the 
fixed point A. In the latter case we stilt have x: + x;  - 1 but now x: - x ; ’ -  0 which 
yields 

w / f  - f k z .  (37) 

Hence the first step of the transformation is equivalent to a renormalization of the bare 
inverse time scale r-’ by the factor ez!J1+’z). 

To find the flow of (x: +x ; )  away from the line BA, the next term, e-Z(h+’l) must be 
taken into  account.^ The eigenvalue in this repulsive direction is, in general, b2 which gives 
the dynamic exponent z = 2. 

Figure 2. Schematic representation of the Bow of Ule b = 3 
RG transformation from the initial low-temperature point B. T ~ E  
critical fixed point  is located at A and the high-temperature fixed 
point is at 0. 

The flow of the trajectories from the point B clearly demonstrates that the alternation of 
the bonds is irrelevant in contrast with the interpretation given by Ashraff and Stinchcombe 
1141. The irrelevant parameter, x: - x;,  flows rapidly to zero. However, in the first RG 
step it multiplies the time scale by a temperature-dependent term as in  (22). After this first 
step of the RG transformation the model becomes an effective homogeneous one. 

4.3. RG transformation of the master equation 

In the Glauber-king chain model the magnetization is an ‘eigenfunction. of the Liouville 
operator. Therefore i t~is  easy to transform the master equation (4) to an equation for the 
average magnetization, and then,decimate it as described above. A different approach [4] 
that suits more complicated cases is to renormalize the master equation itself. This can be 
done by linearizing the deviations of probability distribution function from equilibrium as 
follows 

Q = P ( [ S J ,  t) /P,([S}) = 1 + h( t )B((S l )  B ( ( S ) )  = pi. (38) 
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The master equation becomes 

B W Southem and Y Achiam 

where 

WSI) = r JJi -Pi)wi(si) 

and, for convenience 141, the transition rate is taken to be 

This form of the transition rate is related to the usual Glauber rate (61 as follows 

wiG = wAe-(h-Jx). (41) 

. The decimation of (b  - 1) spins out of every b spins along the chain in the terms on 
both sides of (39) transforms the equation to a similar one but with renormalized parameters 

h’ = bh 1‘ = 521 (42) 

where 

and .I{, .I; satisfy the static recursion relations (33). At low T the first iteration of the RG 
transformation gives 52 - e-(J2-’c). For further iterations Q is equal to b-’ which yields 
z = 2. Taking into account the normalization factor in (41), we find that the characteristic 
time scale is again of the form r - r-1e2(J2-Ji)$2. 

5. Conclusions 

We have shown that a large class of inhomogeneous bond king models belong to the same 
universality class as the uniform bond model. They are all characterized by the dynamic 
exponent z = 2 but the bare time scale has a non-universal temperature dependence which is 
absent in the uniform case. Both exact diagonalization and exact RG methods were used to 
separate these two contributions. This is especially important for transitions at T f  = 0 since 
the bare time scale can diverge. The fact that these two contributions were not separated 
in previous studies [13-15,17,20,231 predicts a violation of the standard dynamic scaling 
in inhomogeneous king systems. A second problem, where the separation of these two 
contributions is important is for spinodal decomposition in the alternating-bond king chain 
[16,17]. According to Bray [16] the domain growth in the Glauber-king chain, following 
a sudden quench from an initial high-temperature state to a small non-zero temperature, is 
described by a power-law decay of the autocorrelation function 

C(0, f ,  f‘) - (1”’)”Z ( 4 4  
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for constant t .  This dependence was confirmed in the homogenous Ising chain [17,24]. Our 
results can be used to predict the decay of the autocorrelation function in the alternating-bond 
Glauber-king model. Since it belongs to the uniform bond universality class, it has z = 2. 
However, in the long-time region, the time is measured in terms of the bare time scale of the 
specific kinetic model. For the alternating-bond Glauber model the temperature-dependent 
bare time scale is r-1e21J2-Jll. This is exactly the expression found in 1171. However, the 
unusual scaling form suggested in that reference is not needed. 

Finally, our results also apply to systems with two types of bonds distributed randomly 
[15,23] along the chain. It is the weakest bond that determines the asymptotic behaviour 
of the correlation len-4. The regions between these weak bonds form blocks which at 
T = 0 are metastable against single-spin flips. These metastable states form a band at finite 
temperature with a width proportional to e-(J2-Jl). Hence the bare time scale is strongly 
temperature-dependent but the dynamic exponent z = 2 and the random bond model belongs 
to the same universality class as the uniform chain. 
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Appendix. The secular equation 

The determinant of the almost tridiagonal /i x n matrix ID1 (16) is 

where j,, = Integer[$z]. The first term above is due to the tridiagonal part of ID[ whereas 
the last two terms are due to the presence of the elements in the upper right and lower left 
corners respectively. These latter terms are the only k-dependent terms. The determinant 
of the tridiagonal part of D satisfies the recursion relation 

(Az) 
- D, = (1 - o/r)Dn-l - an-,a;Dn-2. 

This relation is equivalent to the following recursion formula for the A,? 

A3 = AY-’ +. An-’a- ,-I a-1 a+ n (A: E 1). (A3) 

The A; are the sum of products of j factors of the form a,T,aT . The low T form of these 
factors depends on the magnitudes of the bonds (7) Ji-1, J; ,  Ji+t. The leading terms have 
the form 

ailla+ - 
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where Ai = IJ;:+~-JII. Thisapproximation ~asderivedbyrepIacingthetermtanh(J;+J~+~) 
by 1. The next correction is obtained by the following replacement in each term above 

B W Southern and Y Achiom 

(A5) .-ZAi --f e-ZAj + .-4J;] 

where J,! = min[Jt, J;+l]. 

The low-temperature expansion of the last two terms in (AI) gives 

where Jma (Jfin) are the absolute maximum (minimum) magnitudes of the bonds in a unit 
cell. The parameter Jovr represents the fact that as the cell is traversed the magnitudes of 
the bonds can increase or decrease in various regions. These regions are characterized by 
barriers J;" - Jifi" and the sum over all of these is 

e(J,"'.. - J;"") = .IQvr + (Jma - .Id,,) (A71 
i=I 

where m is the number of local maxima (minima) in the unit cell. 

terms of the first term in (AI) 
The expression (A6) includes a k = 0 term which is cancelled by the w-independent 

- - .2e-2'~e-z(Jm-Jm,",(~ + e-4Jml"). 

The w-dependent part of the secular equation for w << 1 is obtained using (A4). The leading 
small w-dependent contribution is 

Hence the secular equation becomes 

which gives the dispersion relation (18). 
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